Skip to content

DoubleProjectionPredictor#

mesh_predictor.DoubleProjectionPredictor #

Bases: Predictor

Regression method to predict two 2D projections from process parameters.

Two DoE files must be provided:

  • One DoE file for the single shapes (as in the other classes)
  • One DoE file for the joining experiments. It must contain the ID of the top and bottom parts in the first file.

Derives from Predictor, where more useful methods are defined.

Source code in mesh_predictor/DoubleRegressor2D.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
class DoubleProjectionPredictor(Predictor):
    """
    Regression method to predict two 2D projections from process parameters.

    Two DoE files must be provided:

    * One DoE file for the single shapes (as in the other classes)
    * One DoE file for the joining experiments. It must contain the ID of the top and bottom parts in the first file.

    Derives from Predictor, where more useful methods are defined.
    """

    def load_data(self, 
            doe_joining, 
            doe_single, 
            data, 
            process_parameters_joining, 
            process_parameters_single, 
            position, 
            output, 
            categorical_joining=[], 
            categorical_single=[], 
            index_joining='doe_id', 
            index_single='doe_id', 
            part_index='pos', 
            top_bottom=['Oberblech_ID', 'Unterblech_ID'],
            validation_split=0.1, 
            validation_method="random",
            position_scaler="normal",
        ):
        """
        Loads pandas Dataframes containing the data and preprocesses it.

        :param doe_joining: pandas.Dataframe object containing the process parameters of the joining experiments.
        :param doe_single: pandas.Dataframe object containing the process parameters of the single deep drawing experiments.
        :param data: pandas.Dataframe object containing the experiments.
        :param process_parameters_joining: list of joining process parameters to be used. The names must match the columns of the csv file.
        :param process_parameters_single: list of singleprocess parameters to be used. The names must match the columns of the csv file.
        :param categorical_joining: list of joining process parameters that should be considered as categorical nad one-hot encoded.
        :param categorical_single: list of single process parameters that should be considered as categorical nad one-hot encoded.
        :param position: position variables as a list. The name must match the columns of the csv file.
        :param output: output variable(s) to be predicted. The name must match the columns of the csv file.
        :param index_joining: name of the column in doe_joining and data representing the joining design ID (default: 'doe_id')
        :param index_single: name of the column in doe_single representing the singledesign ID (default: 'doe_id')
        :param validation_split: percentage of the data used for validation (default: 0.1)
        :param validation_method: method to split the data for validation, either 'random' or 'leaveoneout' (default: 'random')
        :param position_scaler: normalization applied to the position attributes ('minmax' or 'normal', default 'normal')
        """

        self.has_config = True
        self.data_loaded = True

        # Attributes names
        self.process_parameters_joining = process_parameters_joining
        self.process_parameters_single = process_parameters_single
        self.process_parameters = process_parameters_joining + process_parameters_single

        self.position_attributes = position
        if not len(self.position_attributes) == 2:
            print("Error: the position attribute must have two dimensions.")
            sys.exit()

        if isinstance(output, list): 
            self.output_attributes = output
        else:
            self.output_attributes = [output]

        self.categorical_attributes_joining = categorical_joining
        self.categorical_attributes_single = categorical_single
        self.categorical_attributes = categorical_joining + categorical_single

        self.angle_input = False
        self.position_scaler = position_scaler

        self.doe_id_joining = index_joining
        self.doe_id = index_joining
        self.doe_id_single = index_single

        self.part_index = part_index
        self.top_bottom = top_bottom

        self.validation_split = validation_split
        self.validation_method = validation_method

        # Process parameters
        self._preprocess_parameters(doe_joining, doe_single)

        # Expand the process parameters in the main df
        self._preprocess_variables(data)

        # Get numpy arrays
        self._make_arrays()

    #############################################################################################
    ## Data preprocessing
    #############################################################################################

    def _preprocess_parameters(self, doe_joining, doe_single):

        # Raw data, without normalization
        self.df_doe_joining_raw = doe_joining[[self.doe_id_joining] + self.top_bottom + self.process_parameters_joining]
        self.df_doe_single_raw = doe_single[[self.doe_id_single] + self.process_parameters_single]

        self.df_doe_raw = self.df_doe_joining_raw.join(self.df_doe_single_raw.set_index(self.doe_id_single), on=self.top_bottom[0])
        self.df_doe_raw = self.df_doe_raw.join(self.df_doe_single_raw.set_index(self.doe_id_single), on=self.top_bottom[1], lsuffix="_top", rsuffix="_bot")

        # Normalized dataframe
        self.df_doe = pd.DataFrame()
        self.df_doe[self.doe_id_joining] = doe_joining[self.doe_id_joining]

        # Joining attributes
        for attr in self.process_parameters_joining:

            if not attr in self.categorical_attributes_joining: # numerical

                data = self.df_doe_raw[attr]
                self.features.append(attr)

                self.min_values[attr] = data.min()
                self.max_values[attr] = data.max()
                self.mean_values[attr] = data.mean()
                self.std_values[attr] = data.std()

                self.df_doe = self.df_doe.join((data - self.mean_values[attr])/self.std_values[attr])

            else: # categorical
                self.categorical_values[attr] = sorted(self.df_doe_raw[attr].unique())

                onehot = pd.get_dummies(self.df_doe_raw[attr], prefix=attr)
                for val in onehot.keys():
                    self.features.append(val)

                self.df_doe = self.df_doe.join(onehot)

        # Single attributes
        for attr in self.process_parameters_single:
            if not attr in self.categorical_attributes_single: # numerical
                data = self.df_doe_single_raw[attr]

                self.min_values[attr] = data.min()
                self.max_values[attr] = data.max()
                self.mean_values[attr] = data.mean()
                self.std_values[attr] = data.std()


            else: # categorical
                self.categorical_values[attr] = sorted(self.df_doe_single_raw[attr].unique())


        for suffix in ['_top', '_bot']:
            for attr in self.process_parameters_single:

                if not attr in self.categorical_attributes_single: # numerical

                    data = self.df_doe_raw[attr + suffix]
                    self.features.append(attr + suffix)

                    self.df_doe = self.df_doe.join((data - self.mean_values[attr])/self.std_values[attr])

                else: # categorical

                    #onehot = pd.get_dummies(self.df_doe_raw[attr + suffix], prefix=attr+suffix)
                    onehot = onehot_topbot(self.df_doe_raw[attr + suffix], attr, self.categorical_values[attr],  suffix)
                    for val in onehot.keys():
                        self.features.append(val)

                    self.df_doe = self.df_doe.join(onehot)

    def _preprocess_variables(self, df):

        # Unique experiments
        self.doe_ids = df[self.doe_id_joining].unique()
        self.number_experiments = len(self.doe_ids)

        # Position input and output variables
        for attr in self.position_attributes + self.output_attributes:
            data = df[attr]
            self.min_values[attr] = data.min()
            self.max_values[attr] = data.max()
            self.mean_values[attr] = data.mean()
            self.std_values[attr] = data.std()

        # Main dataframe
        self.df_raw = df[[self.doe_id_joining, self.part_index] + self.position_attributes + self.output_attributes]
        self.df = self.df_raw.merge(self.df_doe, how='left', on=self.doe_id_joining)

        # Copy the doe_id and drop it
        self.doe_id_list = self.df[self.doe_id_joining].to_numpy()
        self.df.drop(self.doe_id_joining, axis=1, inplace=True)

        # Position index (top/bottom as 1/0)
        self.features.append(self.part_index)

        # Normalize input and outputs
        for attr in self.position_attributes:
            self.df[attr] = self.df[attr].apply(
                lambda x: (x - self.mean_values[attr])/(self.std_values[attr])
            ) 
            self.features.append(attr)

        for attr in self.output_attributes:
            self.df[attr] = self.df[attr].apply(
                lambda x: (x - self.min_values[attr])/(self.max_values[attr] - self.min_values[attr])
            ) 

    def data_summary(self):
        """
        Displays a summary of the loaded data.
        """
        if not self.has_config:
            print("Error: The data has not been loaded yet.")
            return

        print("Data summary\n" + "-"*60 + "\n")

        print("Joining process parameters:")
        for param in self.process_parameters_joining:
            if param in self.categorical_attributes:
                print("\t-", param, ": categorical " + str(self.categorical_values[param]) )
            else:
                print("\t-", param, ": numerical [", self.min_values[param], " ... ", self.max_values[param], "]")


        print("Single process parameters:")
        for param in self.process_parameters_single:
            if param in self.categorical_attributes:
                print("\t-", param, ": categorical " + str(self.categorical_values[param]) )
            else:
                print("\t-", param, ": numerical [", self.min_values[param], " ... ", self.max_values[param], "]")

        print("Input variables:")
        for attr in self.position_attributes:
            print("\t-", attr, ": numerical,", "[", self.min_values[attr], "/", self.max_values[attr], "]", "- encoded with cos/sin" if self.angle_input else "")

        print("Output variable(s):")
        for attr in self.output_attributes:
            print("\t-", attr, ": numerical,", "[", self.min_values[attr], "/", self.max_values[attr], "]")

        if self.data_loaded:
            print("\nInputs", self.X.shape)
            print("Outputs", self.target.shape)
            print("Total number of experiments:", self.number_experiments)
            print("Total number of samples:", self.number_samples)
            print("Number of training samples:", self.number_training_samples)
            print("Number of test samples:", self.number_validation_samples)
            if self.validation_method == "leaveoneout":
                print("Number of experiments in the test set:", self.number_test_experiments)

    #############################################################################################
    ## IO
    #############################################################################################

    def _get_config(self):

        config = {
            # Features
            'process_parameters': self.process_parameters,
            'process_parameters_joining': self.process_parameters_joining,
            'process_parameters_single': self.process_parameters_single,

            'position_attributes': self.position_attributes,
            'output_attributes': self.output_attributes,

            'categorical_attributes': self.categorical_attributes,
            'categorical_attributes_joining': self.categorical_attributes_joining,
            'categorical_attributes_single': self.categorical_attributes_single,

            'angle_input': self.angle_input,
            'position_scaler': self.position_scaler,

            'doe_id': self.doe_id,
            'doe_id_joining': self.doe_id_joining,
            'doe_id_single': self.doe_id_single,

            'features': self.features,
            'categorical_values': self.categorical_values,

            # Min/Max/Mean/Std values
            'min_values': self.min_values,
            'max_values': self.max_values,
            'mean_values': self.mean_values,
            'std_values': self.std_values,

            # Data shape
            'input_shape': self.input_shape,
            'number_samples': self.number_samples,

            'part_index': self.part_index,
            'top_bottom': self.top_bottom,
        }

        #for key, val in config.items():
        #    print(key, val, type(val))

        return config

    def _set_config(self, config):

        self.process_parameters = config['process_parameters']
        self.process_parameters_joining = config['process_parameters_joining']
        self.process_parameters_single = config['process_parameters_single']

        self.position_attributes = config['position_attributes']
        self.output_attributes = config['output_attributes']

        self.categorical_attributes = config['categorical_attributes']
        self.categorical_attributes_joining = config['categorical_attributes_joining']
        self.categorical_attributes_single = config['categorical_attributes_single']

        self.angle_input = config['angle_input']
        self.position_scaler  = config['position_scaler']

        self.doe_id = config['doe_id']
        self.doe_id_joining = config['doe_id_joining']
        self.doe_id_single = config['doe_id_single']

        self.features = config['features']
        self.categorical_values = config['categorical_values']

        # Min/Max/Mean/Std values
        self.min_values = config['min_values']
        self.max_values = config['max_values']
        self.mean_values = config['mean_values']
        self.std_values = config['std_values']

        # Data shape
        self.input_shape = config['input_shape']
        self.number_samples = config['number_samples']

        self.part_index = config['part_index']
        self.top_bottom = config['top_bottom']

    @classmethod
    def from_h5(cls, filename):
        """
        Creates a Regressor from a saved HDF5 file (using `save_h5()`).

        :param filename: path to the .h5 file.
        """
        reg = cls()
        reg.load_h5(filename)
        return reg

    def save_h5(self, filename):
        """
        Saves both the model and the configuration in a hdf5 file.

        :param filename: path to the .h5 file.
        """
        try:
            import h5py
        except:
            print("ERROR: h5py is not installed.")
            return

        from tensorflow.python.keras.saving import hdf5_format

        # Save model
        with h5py.File(filename, mode='w') as f:

            hdf5_format.save_model_to_hdf5(self.model, f)

            f.attrs['batch_size'] = self.batch_size

            # Features
            f.attrs['process_parameters'] = self.process_parameters
            f.attrs['process_parameters_joining'] = self.process_parameters_joining
            f.attrs['process_parameters_single'] = self.process_parameters_single
            f.attrs['position_attributes'] = self.position_attributes
            f.attrs['output_attributes'] = self.output_attributes,
            f.attrs['categorical_attributes'] = self.categorical_attributes
            f.attrs['categorical_attributes_joining'] = self.categorical_attributes_joining
            f.attrs['categorical_attributes_single'] = self.categorical_attributes_single

            f.attrs['angle_input'] = self.angle_input
            f.attrs['position_scaler'] = self.position_scaler
            f.attrs['doe_id'] = self.doe_id
            f.attrs['doe_id_joining'] = self.doe_id_joining
            f.attrs['doe_id_single'] = self.doe_id_single


            f.attrs['features'] = self.features,
            f.attrs['categorical_values'] = json.dumps(self.categorical_values, cls=NpEncoder) #self.categorical_values,

            # Min/Max/Mean/Std values
            f.attrs['min_values'] = json.dumps(self.min_values, cls=NpEncoder)#self.min_values,
            f.attrs['max_values'] = json.dumps(self.max_values, cls=NpEncoder) #self.max_values,
            f.attrs['mean_values'] = json.dumps(self.mean_values, cls=NpEncoder) #self.mean_values,
            f.attrs['std_values'] = json.dumps(self.std_values, cls=NpEncoder) #self.std_values,

            # Data shape
            f.attrs['input_shape'] = self.input_shape
            f.attrs['number_samples'] = self.number_samples
            f.attrs['part_index'] = self.part_index
            f.attrs['top_bottom'] = self.top_bottom


    def load_h5(self, filename):
        """
        Loads a model and its configuration from an hdf5 file.

        :param filename: path to the .h5 file.
        """

        try:
            import h5py
        except:
            print("ERROR: h5py is not installed.")
            return

        from tensorflow.python.keras.saving import hdf5_format

        # Load model
        with h5py.File(filename, mode='r') as f:
            self.model = hdf5_format.load_model_from_hdf5(f)

            self.batch_size = f.attrs['batch_size']

            # Features
            self.process_parameters = f.attrs['process_parameters'].ravel().tolist()
            self.process_parameters_joining = f.attrs['process_parameters_joining'].ravel().tolist()
            self.process_parameters_single = f.attrs['process_parameters_single'].ravel().tolist()
            self.position_attributes = f.attrs['position_attributes'].ravel().tolist()
            self.output_attributes = f.attrs['output_attributes'].ravel().tolist()
            self.categorical_attributes = f.attrs['categorical_attributes'].ravel().tolist()
            self.categorical_attributes_joining = f.attrs['categorical_attributes_joining'].ravel().tolist()
            self.categorical_attributes_single = f.attrs['categorical_attributes_single'].ravel().tolist()


            self.angle_input = bool(f.attrs['angle_input'])
            self.position_scaler  = f.attrs['position_scaler']
            self.doe_id = f.attrs['doe_id']
            self.doe_id_joining = f.attrs['doe_id_joining']
            self.doe_id_single = f.attrs['doe_id_single']

            self.features = f.attrs['features'].ravel().tolist()
            self.categorical_values = json.loads(f.attrs['categorical_values'])

            # Min/Max/Mean/Std values
            self.min_values = json.loads(f.attrs['min_values'])
            self.max_values = json.loads(f.attrs['max_values'])
            self.mean_values = json.loads(f.attrs['mean_values'])
            self.std_values = json.loads(f.attrs['std_values'])

            # Data shape
            self.input_shape = f.attrs['input_shape']
            self.number_samples = f.attrs['number_samples']
            self.part_index = f.attrs['part_index']
            self.top_bottom = f.attrs['top_bottom']

            self.has_config = True


    #############################################################################################
    ## Inference
    #############################################################################################

    def predict(self, process_parameters, positions, as_df=False):
        """
        Predicts the output variable(s) for a given number of input positions (either uniformly distributed between the min/max values of each input dimension used for training, or a (N, 2) array).

        ```python
        reg.predict(process_parameters={...}, positions=(100, 100))
        # or:
        reg.predict(
            process_parameters={...}, 
            positions=pd.DataFrame(
                {
                    "u": np.linspace(0., 1. , 100), 
                    "v": np.linspace(0., 1. , 100)
                }
            ).to_numpy()
        )
        ```

        :param process_parameters: dictionary containing the value of all process parameters.
        :param positions: tuple of dimensions to be used for the prediction or (N, 2) numpy array of positions.
        :param as_df: whether the prediction should be returned as numpy arrays (False, default) or pandas dataframe (True).
        """

        if not self.has_config:
            print("Error: The data has not been loaded yet.")
            return

        if self.model is None:
            print("Error: no model has been trained yet.")
            return

        # Generate inputs
        if isinstance(positions, tuple):
            shape = positions
            nb_points = shape[0] * shape[1]

            x = np.linspace(self.min_values[self.position_attributes[0]], self.max_values[self.position_attributes[0]], shape[0])
            y = np.linspace(self.min_values[self.position_attributes[1]], self.max_values[self.position_attributes[1]], shape[1])

            samples = np.array([[i, j] for i in x for j in y])

        elif isinstance(positions, np.ndarray):

            nb_points, d = positions.shape
            shape = (nb_points, 1)
            if d != 2:
                print("ERROR: the positions must have the shape (N, 2).")
                return
            samples = positions

        # Process parameters
        X = np.empty((nb_points, 0))

        # Joining attributes
        for idx, attr in enumerate(self.process_parameters_joining):
            if attr in self.categorical_attributes_joining: # numerical
                code = one_hot([process_parameters[attr]], self.categorical_values[attr])
                code = np.repeat(code, nb_points, axis=0)
                X = np.concatenate((X, code), axis=1)

            else:
                val = ((process_parameters[attr] - self.mean_values[attr] ) / self.std_values[attr]) * np.ones((nb_points, 1))
                X = np.concatenate((X, val ), axis=1)

        # Top and bottom attributes
        for suffix in ['_top', '_bot']:
            for idx, attr in enumerate(self.process_parameters_single):
                if attr in self.categorical_attributes_single: # numerical
                    code = one_hot([process_parameters[attr+suffix]], self.categorical_values[attr])
                    code = np.repeat(code, nb_points, axis=0)
                    X = np.concatenate((X, code), axis=1)

                else:
                    val = ((process_parameters[attr+suffix] - self.mean_values[attr] ) / self.std_values[attr]) * np.ones((nb_points, 1))
                    X = np.concatenate((X, val ), axis=1)

        # Part index (1 for top, 0 for bottom)
        part = np.ones((nb_points, 1))
        X = np.concatenate((X, part ), axis=1)

        # Position attributes are last
        for i, attr in enumerate(self.position_attributes):
            if self.position_scaler == 'normal':
                values = (samples[:, i] - self.mean_values[attr] ) / self.std_values[attr]
            else:
                values = (samples[:, i] - self.min_values[attr] ) / (self.max_values[attr] - self.min_values[attr])

            X = np.concatenate((X, values.reshape((nb_points, 1))), axis=1)

        # Concatenate the bottom part
        X_bottom = X.copy()
        X_bottom[:, -3] = 0
        X = np.concatenate((X, X_bottom), axis=0)


        # Predict outputs and de-normalize
        y = self.model.predict(X, batch_size=self.batch_size)

        result = []
        for idx, attr in enumerate(self.output_attributes):
            result.append(self._rescale_output(attr, y[:, idx]))


        # Return inputs and outputs
        if as_df:
            d = pd.DataFrame()
            d['part'] = X[:, -3]
            for i, attr in enumerate(self.position_attributes):
                d[attr] = np.concatenate((samples[:, i], samples[:, i]), axis=0)
            for i, attr in enumerate(self.output_attributes):
                d[attr] = result[i]
            return d

        else:
            return samples, np.array(result)


    def _compare(self, doe_id):

        if self.model is None:
            print("Error: no model has been trained yet.")
            return

        if not doe_id in self.doe_ids:
            print("The experiment", doe_id, 'is not in the dataset.')
            return

        X = self.X[self.doe_id_list == doe_id, :]
        t = self.target[self.doe_id_list == doe_id, :]
        N, _ = t.shape

        for idx, attr in enumerate(self.output_attributes):
            t[:, idx] = self._rescale_output(attr, t[:, idx])


        y = self.model.predict(X, batch_size=self.batch_size)


        for idx, attr in enumerate(self.output_attributes):
            y[:, idx] = self._rescale_output(attr, y[:, idx])


        X_top = X[X[:, -3] == 1, :]; t_top = t[X[:, -3] == 1, :]; y_top = y[X[:, -3] == 1, :]
        X_bot = X[X[:, -3] == 0, :]; t_bot = t[X[:, -3] == 0, :]; y_bot = y[X[:, -3] == 0, :]

        import matplotlib.tri as tri
        triang_top = tri.Triangulation(X_top[:, -2], X_top[:, -1])
        triang_bot = tri.Triangulation(X_bot[:, -2], X_bot[:, -1])

        for idx, attr in enumerate(self.output_attributes):
            plt.figure()
            plt.subplot(221)
            plt.tripcolor(triang_top, t_top[:, idx], shading='flat', vmin=t_top[:, idx].min(), vmax=t_top[:, idx].max())
            plt.colorbar()
            plt.title("Top - Ground truth - " + attr)

            plt.subplot(222)
            plt.tripcolor(triang_top, y_top[:, idx], shading='flat', vmin=t_top[:, idx].min(), vmax=t_top[:, idx].max())
            plt.colorbar()
            plt.title("Top - Prediction - " + attr)
            plt.tight_layout()

            plt.subplot(223)
            plt.tripcolor(triang_bot, t_bot[:, idx], shading='flat', vmin=t_bot[:, idx].min(), vmax=t_bot[:, idx].max())
            plt.colorbar()
            plt.title("Bottom - Ground truth - " + attr)

            plt.subplot(224)
            plt.tripcolor(triang_bot, y_bot[:, idx], shading='flat', vmin=t_bot[:, idx].min(), vmax=t_bot[:, idx].max())
            plt.colorbar()
            plt.title("Bottom - Prediction - " + attr)
            plt.tight_layout()


    def compare_xyz(self, doe_id):
        """
        Creates a 3D point cloud compring the ground truth and the prediction on a provided experiment. 

        Works only when the output variables are [x, y, z] coordinates.

        :param doe_id: id of the experiment.
        """

        if self.model is None:
            print("Error: no model has been trained yet.")
            return

        if not doe_id in self.doe_ids:
            print("The experiment", doe_id, 'is not in the dataset.')
            return

        indices = self.df_raw[self.df_raw[self.doe_id_joining]==doe_id].index.to_numpy()

        N = len(indices)
        X = self.X[indices, :]
        t = self.target[indices, :]
        for idx, attr in enumerate(self.output_attributes):
            t[:, idx] = self._rescale_output(attr, t[:, idx])


        y = self.model.predict(X, batch_size=self.batch_size)



        for idx, attr in enumerate(self.output_attributes):
            y[:, idx] = self._rescale_output(attr, y[:, idx])


        X_top = X[X[:, -3] == 1, :]; t_top = t[X[:, -3] == 1, :]; y_top = y[X[:, -3] == 1, :]
        X_bot = X[X[:, -3] == 0, :]; t_bot = t[X[:, -3] == 0, :]; y_bot = y[X[:, -3] == 0, :]

        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        ax.set_title("Ground truth")
        p = ax.scatter(
            t_top[:, 0],  
            t_top[:, 1],
            t_top[:, 2],
            s=0.001
        )
        p = ax.scatter(
            t_bot[:, 0],  
            t_bot[:, 1],
            t_bot[:, 2],
            s=0.001
        )
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        ax.set_title("Prediction")
        p = ax.scatter(
            y_top[:, 0],  
            y_top[:, 1],
            y_top[:, 2],
            s=0.001
        )
        p = ax.scatter(
            y_bot[:, 0],  
            y_bot[:, 1],
            y_bot[:, 2],
            s=0.001
        )

    #############################################################################################
    ## Optimization
    #############################################################################################

    def optimize(self, objective, positions, nb_trials, fixed={}, as_df=False):
        """
        Returns the process parameters that minimize the provided objective function.

        The objective function must take two parameters `x` and `y` where `x` are input positions and `y` the predictions. It must return one value, the "cost" of that simulation.

        ```python
        def mean_deviation(x, y):
            return y[:, 0].mean()

        params = reg.optimize(mean_deviation, positions=100, nb_trials=1000)
        ```

        Alternative, a dataframe with input and output variables can be passed to the function if `as_df` is True.

        ```python
        def mean_deviation(df):
            return df['deviation'].to_numpy().mean()

        params = reg.optimize(mean_deviation, positions=100, nb_trials=1000)
        ```


        :param objective: objective function to be minimized.
        :param positions: input positions for the prediction. Must be the same as for `predict()` depending on the class.
        :param nb_trials: number of optimization trials.
        :param fixed: dictionary containing fixed values of the process parameters that should not be optimized.
        :param as_df: whether the objective function takes x,y or df as an input.
        """
        self._optimize_function = objective
        self._optimize_positions = positions
        self._optimize_fixed = fixed
        self._optimize_as_df = as_df


        optuna.logging.set_verbosity(optuna.logging.WARNING)
        self.study = optuna.create_study(direction='minimize')
        self.study.optimize(self._optimize, n_trials=nb_trials, show_progress_bar=True)

        pp = {}
        for attr in self.process_parameters_joining:
            if attr in fixed.keys():
                pp[attr] = fixed[attr]
        for attr in self.process_parameters_single:
            if attr in fixed.keys():
                pp[attr + '_top'] = fixed[attr]
                pp[attr + '_bot'] = fixed[attr]
            elif attr + '_top' in fixed.keys():
                pp[attr + '_top'] = fixed[attr + '_top']
                pp[attr + '_bot'] = fixed[attr + '_bot']

        pp.update(self.study.best_params)

        print("Best parameters:", pp)
        print("Achieved objective:", self.study.best_value)

        return pp

    def _optimize(self, trial):

        process_parameters = {}

        for attr in self.process_parameters_joining:

            if attr in self._optimize_fixed.keys():
                process_parameters[attr] = self._optimize_fixed[attr]
                continue

            if attr in self.categorical_attributes:

                values = self.categorical_values[attr]
                for i, v in enumerate(values):
                    if isinstance(v, np.int64):
                        values[i] = int(v)

                process_parameters[attr] = trial.suggest_categorical(attr, values)
            else:
                process_parameters[attr] = trial.suggest_float(attr, self.min_values[attr], self.max_values[attr])

        for suffix in ['_top', '_bot']:
            for attr in self.process_parameters_single:

                if attr in self._optimize_fixed.keys():
                    process_parameters[attr+suffix] = self._optimize_fixed[attr]
                    continue
                elif attr + suffix in self._optimize_fixed.keys():
                    process_parameters[attr+suffix] = self._optimize_fixed[attr + suffix]
                    continue


                if attr in self.categorical_attributes:

                    values = self.categorical_values[attr]
                    for i, v in enumerate(values):
                        if isinstance(v, np.int64):
                            values[i] = int(v)

                    process_parameters[attr+suffix] = trial.suggest_categorical(attr+suffix, values)
                else:
                    process_parameters[attr+suffix] = trial.suggest_float(attr+suffix, self.min_values[attr], self.max_values[attr])

        if not self._optimize_as_df:

            x, y = self.predict(process_parameters, self._optimize_positions, as_df=self._optimize_as_df)

            res = self._optimize_function(x, y)
        else:
            df = self.predict(process_parameters, self._optimize_positions, as_df=self._optimize_as_df)

            res = self._optimize_function(df)

        return res

load_data(doe_joining, doe_single, data, process_parameters_joining, process_parameters_single, position, output, categorical_joining=[], categorical_single=[], index_joining='doe_id', index_single='doe_id', part_index='pos', top_bottom=['Oberblech_ID', 'Unterblech_ID'], validation_split=0.1, validation_method='random', position_scaler='normal') #

Loads pandas Dataframes containing the data and preprocesses it.

Parameters:

Name Type Description Default
doe_joining

pandas.Dataframe object containing the process parameters of the joining experiments.

required
doe_single

pandas.Dataframe object containing the process parameters of the single deep drawing experiments.

required
data

pandas.Dataframe object containing the experiments.

required
process_parameters_joining

list of joining process parameters to be used. The names must match the columns of the csv file.

required
process_parameters_single

list of singleprocess parameters to be used. The names must match the columns of the csv file.

required
categorical_joining

list of joining process parameters that should be considered as categorical nad one-hot encoded.

[]
categorical_single

list of single process parameters that should be considered as categorical nad one-hot encoded.

[]
position

position variables as a list. The name must match the columns of the csv file.

required
output

output variable(s) to be predicted. The name must match the columns of the csv file.

required
index_joining

name of the column in doe_joining and data representing the joining design ID (default: 'doe_id')

'doe_id'
index_single

name of the column in doe_single representing the singledesign ID (default: 'doe_id')

'doe_id'
validation_split

percentage of the data used for validation (default: 0.1)

0.1
validation_method

method to split the data for validation, either 'random' or 'leaveoneout' (default: 'random')

'random'
position_scaler

normalization applied to the position attributes ('minmax' or 'normal', default 'normal')

'normal'
Source code in mesh_predictor/DoubleRegressor2D.py
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def load_data(self, 
        doe_joining, 
        doe_single, 
        data, 
        process_parameters_joining, 
        process_parameters_single, 
        position, 
        output, 
        categorical_joining=[], 
        categorical_single=[], 
        index_joining='doe_id', 
        index_single='doe_id', 
        part_index='pos', 
        top_bottom=['Oberblech_ID', 'Unterblech_ID'],
        validation_split=0.1, 
        validation_method="random",
        position_scaler="normal",
    ):
    """
    Loads pandas Dataframes containing the data and preprocesses it.

    :param doe_joining: pandas.Dataframe object containing the process parameters of the joining experiments.
    :param doe_single: pandas.Dataframe object containing the process parameters of the single deep drawing experiments.
    :param data: pandas.Dataframe object containing the experiments.
    :param process_parameters_joining: list of joining process parameters to be used. The names must match the columns of the csv file.
    :param process_parameters_single: list of singleprocess parameters to be used. The names must match the columns of the csv file.
    :param categorical_joining: list of joining process parameters that should be considered as categorical nad one-hot encoded.
    :param categorical_single: list of single process parameters that should be considered as categorical nad one-hot encoded.
    :param position: position variables as a list. The name must match the columns of the csv file.
    :param output: output variable(s) to be predicted. The name must match the columns of the csv file.
    :param index_joining: name of the column in doe_joining and data representing the joining design ID (default: 'doe_id')
    :param index_single: name of the column in doe_single representing the singledesign ID (default: 'doe_id')
    :param validation_split: percentage of the data used for validation (default: 0.1)
    :param validation_method: method to split the data for validation, either 'random' or 'leaveoneout' (default: 'random')
    :param position_scaler: normalization applied to the position attributes ('minmax' or 'normal', default 'normal')
    """

    self.has_config = True
    self.data_loaded = True

    # Attributes names
    self.process_parameters_joining = process_parameters_joining
    self.process_parameters_single = process_parameters_single
    self.process_parameters = process_parameters_joining + process_parameters_single

    self.position_attributes = position
    if not len(self.position_attributes) == 2:
        print("Error: the position attribute must have two dimensions.")
        sys.exit()

    if isinstance(output, list): 
        self.output_attributes = output
    else:
        self.output_attributes = [output]

    self.categorical_attributes_joining = categorical_joining
    self.categorical_attributes_single = categorical_single
    self.categorical_attributes = categorical_joining + categorical_single

    self.angle_input = False
    self.position_scaler = position_scaler

    self.doe_id_joining = index_joining
    self.doe_id = index_joining
    self.doe_id_single = index_single

    self.part_index = part_index
    self.top_bottom = top_bottom

    self.validation_split = validation_split
    self.validation_method = validation_method

    # Process parameters
    self._preprocess_parameters(doe_joining, doe_single)

    # Expand the process parameters in the main df
    self._preprocess_variables(data)

    # Get numpy arrays
    self._make_arrays()

data_summary() #

Displays a summary of the loaded data.

Source code in mesh_predictor/DoubleRegressor2D.py
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
def data_summary(self):
    """
    Displays a summary of the loaded data.
    """
    if not self.has_config:
        print("Error: The data has not been loaded yet.")
        return

    print("Data summary\n" + "-"*60 + "\n")

    print("Joining process parameters:")
    for param in self.process_parameters_joining:
        if param in self.categorical_attributes:
            print("\t-", param, ": categorical " + str(self.categorical_values[param]) )
        else:
            print("\t-", param, ": numerical [", self.min_values[param], " ... ", self.max_values[param], "]")


    print("Single process parameters:")
    for param in self.process_parameters_single:
        if param in self.categorical_attributes:
            print("\t-", param, ": categorical " + str(self.categorical_values[param]) )
        else:
            print("\t-", param, ": numerical [", self.min_values[param], " ... ", self.max_values[param], "]")

    print("Input variables:")
    for attr in self.position_attributes:
        print("\t-", attr, ": numerical,", "[", self.min_values[attr], "/", self.max_values[attr], "]", "- encoded with cos/sin" if self.angle_input else "")

    print("Output variable(s):")
    for attr in self.output_attributes:
        print("\t-", attr, ": numerical,", "[", self.min_values[attr], "/", self.max_values[attr], "]")

    if self.data_loaded:
        print("\nInputs", self.X.shape)
        print("Outputs", self.target.shape)
        print("Total number of experiments:", self.number_experiments)
        print("Total number of samples:", self.number_samples)
        print("Number of training samples:", self.number_training_samples)
        print("Number of test samples:", self.number_validation_samples)
        if self.validation_method == "leaveoneout":
            print("Number of experiments in the test set:", self.number_test_experiments)

from_h5(filename) classmethod #

Creates a Regressor from a saved HDF5 file (using save_h5()).

Parameters:

Name Type Description Default
filename

path to the .h5 file.

required
Source code in mesh_predictor/DoubleRegressor2D.py
356
357
358
359
360
361
362
363
364
365
@classmethod
def from_h5(cls, filename):
    """
    Creates a Regressor from a saved HDF5 file (using `save_h5()`).

    :param filename: path to the .h5 file.
    """
    reg = cls()
    reg.load_h5(filename)
    return reg

save_h5(filename) #

Saves both the model and the configuration in a hdf5 file.

Parameters:

Name Type Description Default
filename

path to the .h5 file.

required
Source code in mesh_predictor/DoubleRegressor2D.py
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
def save_h5(self, filename):
    """
    Saves both the model and the configuration in a hdf5 file.

    :param filename: path to the .h5 file.
    """
    try:
        import h5py
    except:
        print("ERROR: h5py is not installed.")
        return

    from tensorflow.python.keras.saving import hdf5_format

    # Save model
    with h5py.File(filename, mode='w') as f:

        hdf5_format.save_model_to_hdf5(self.model, f)

        f.attrs['batch_size'] = self.batch_size

        # Features
        f.attrs['process_parameters'] = self.process_parameters
        f.attrs['process_parameters_joining'] = self.process_parameters_joining
        f.attrs['process_parameters_single'] = self.process_parameters_single
        f.attrs['position_attributes'] = self.position_attributes
        f.attrs['output_attributes'] = self.output_attributes,
        f.attrs['categorical_attributes'] = self.categorical_attributes
        f.attrs['categorical_attributes_joining'] = self.categorical_attributes_joining
        f.attrs['categorical_attributes_single'] = self.categorical_attributes_single

        f.attrs['angle_input'] = self.angle_input
        f.attrs['position_scaler'] = self.position_scaler
        f.attrs['doe_id'] = self.doe_id
        f.attrs['doe_id_joining'] = self.doe_id_joining
        f.attrs['doe_id_single'] = self.doe_id_single


        f.attrs['features'] = self.features,
        f.attrs['categorical_values'] = json.dumps(self.categorical_values, cls=NpEncoder) #self.categorical_values,

        # Min/Max/Mean/Std values
        f.attrs['min_values'] = json.dumps(self.min_values, cls=NpEncoder)#self.min_values,
        f.attrs['max_values'] = json.dumps(self.max_values, cls=NpEncoder) #self.max_values,
        f.attrs['mean_values'] = json.dumps(self.mean_values, cls=NpEncoder) #self.mean_values,
        f.attrs['std_values'] = json.dumps(self.std_values, cls=NpEncoder) #self.std_values,

        # Data shape
        f.attrs['input_shape'] = self.input_shape
        f.attrs['number_samples'] = self.number_samples
        f.attrs['part_index'] = self.part_index
        f.attrs['top_bottom'] = self.top_bottom

load_h5(filename) #

Loads a model and its configuration from an hdf5 file.

Parameters:

Name Type Description Default
filename

path to the .h5 file.

required
Source code in mesh_predictor/DoubleRegressor2D.py
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def load_h5(self, filename):
    """
    Loads a model and its configuration from an hdf5 file.

    :param filename: path to the .h5 file.
    """

    try:
        import h5py
    except:
        print("ERROR: h5py is not installed.")
        return

    from tensorflow.python.keras.saving import hdf5_format

    # Load model
    with h5py.File(filename, mode='r') as f:
        self.model = hdf5_format.load_model_from_hdf5(f)

        self.batch_size = f.attrs['batch_size']

        # Features
        self.process_parameters = f.attrs['process_parameters'].ravel().tolist()
        self.process_parameters_joining = f.attrs['process_parameters_joining'].ravel().tolist()
        self.process_parameters_single = f.attrs['process_parameters_single'].ravel().tolist()
        self.position_attributes = f.attrs['position_attributes'].ravel().tolist()
        self.output_attributes = f.attrs['output_attributes'].ravel().tolist()
        self.categorical_attributes = f.attrs['categorical_attributes'].ravel().tolist()
        self.categorical_attributes_joining = f.attrs['categorical_attributes_joining'].ravel().tolist()
        self.categorical_attributes_single = f.attrs['categorical_attributes_single'].ravel().tolist()


        self.angle_input = bool(f.attrs['angle_input'])
        self.position_scaler  = f.attrs['position_scaler']
        self.doe_id = f.attrs['doe_id']
        self.doe_id_joining = f.attrs['doe_id_joining']
        self.doe_id_single = f.attrs['doe_id_single']

        self.features = f.attrs['features'].ravel().tolist()
        self.categorical_values = json.loads(f.attrs['categorical_values'])

        # Min/Max/Mean/Std values
        self.min_values = json.loads(f.attrs['min_values'])
        self.max_values = json.loads(f.attrs['max_values'])
        self.mean_values = json.loads(f.attrs['mean_values'])
        self.std_values = json.loads(f.attrs['std_values'])

        # Data shape
        self.input_shape = f.attrs['input_shape']
        self.number_samples = f.attrs['number_samples']
        self.part_index = f.attrs['part_index']
        self.top_bottom = f.attrs['top_bottom']

        self.has_config = True

predict(process_parameters, positions, as_df=False) #

Predicts the output variable(s) for a given number of input positions (either uniformly distributed between the min/max values of each input dimension used for training, or a (N, 2) array).

reg.predict(process_parameters={...}, positions=(100, 100))
# or:
reg.predict(
    process_parameters={...}, 
    positions=pd.DataFrame(
        {
            "u": np.linspace(0., 1. , 100), 
            "v": np.linspace(0., 1. , 100)
        }
    ).to_numpy()
)

Parameters:

Name Type Description Default
process_parameters

dictionary containing the value of all process parameters.

required
positions

tuple of dimensions to be used for the prediction or (N, 2) numpy array of positions.

required
as_df

whether the prediction should be returned as numpy arrays (False, default) or pandas dataframe (True).

False
Source code in mesh_predictor/DoubleRegressor2D.py
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def predict(self, process_parameters, positions, as_df=False):
    """
    Predicts the output variable(s) for a given number of input positions (either uniformly distributed between the min/max values of each input dimension used for training, or a (N, 2) array).

    ```python
    reg.predict(process_parameters={...}, positions=(100, 100))
    # or:
    reg.predict(
        process_parameters={...}, 
        positions=pd.DataFrame(
            {
                "u": np.linspace(0., 1. , 100), 
                "v": np.linspace(0., 1. , 100)
            }
        ).to_numpy()
    )
    ```

    :param process_parameters: dictionary containing the value of all process parameters.
    :param positions: tuple of dimensions to be used for the prediction or (N, 2) numpy array of positions.
    :param as_df: whether the prediction should be returned as numpy arrays (False, default) or pandas dataframe (True).
    """

    if not self.has_config:
        print("Error: The data has not been loaded yet.")
        return

    if self.model is None:
        print("Error: no model has been trained yet.")
        return

    # Generate inputs
    if isinstance(positions, tuple):
        shape = positions
        nb_points = shape[0] * shape[1]

        x = np.linspace(self.min_values[self.position_attributes[0]], self.max_values[self.position_attributes[0]], shape[0])
        y = np.linspace(self.min_values[self.position_attributes[1]], self.max_values[self.position_attributes[1]], shape[1])

        samples = np.array([[i, j] for i in x for j in y])

    elif isinstance(positions, np.ndarray):

        nb_points, d = positions.shape
        shape = (nb_points, 1)
        if d != 2:
            print("ERROR: the positions must have the shape (N, 2).")
            return
        samples = positions

    # Process parameters
    X = np.empty((nb_points, 0))

    # Joining attributes
    for idx, attr in enumerate(self.process_parameters_joining):
        if attr in self.categorical_attributes_joining: # numerical
            code = one_hot([process_parameters[attr]], self.categorical_values[attr])
            code = np.repeat(code, nb_points, axis=0)
            X = np.concatenate((X, code), axis=1)

        else:
            val = ((process_parameters[attr] - self.mean_values[attr] ) / self.std_values[attr]) * np.ones((nb_points, 1))
            X = np.concatenate((X, val ), axis=1)

    # Top and bottom attributes
    for suffix in ['_top', '_bot']:
        for idx, attr in enumerate(self.process_parameters_single):
            if attr in self.categorical_attributes_single: # numerical
                code = one_hot([process_parameters[attr+suffix]], self.categorical_values[attr])
                code = np.repeat(code, nb_points, axis=0)
                X = np.concatenate((X, code), axis=1)

            else:
                val = ((process_parameters[attr+suffix] - self.mean_values[attr] ) / self.std_values[attr]) * np.ones((nb_points, 1))
                X = np.concatenate((X, val ), axis=1)

    # Part index (1 for top, 0 for bottom)
    part = np.ones((nb_points, 1))
    X = np.concatenate((X, part ), axis=1)

    # Position attributes are last
    for i, attr in enumerate(self.position_attributes):
        if self.position_scaler == 'normal':
            values = (samples[:, i] - self.mean_values[attr] ) / self.std_values[attr]
        else:
            values = (samples[:, i] - self.min_values[attr] ) / (self.max_values[attr] - self.min_values[attr])

        X = np.concatenate((X, values.reshape((nb_points, 1))), axis=1)

    # Concatenate the bottom part
    X_bottom = X.copy()
    X_bottom[:, -3] = 0
    X = np.concatenate((X, X_bottom), axis=0)


    # Predict outputs and de-normalize
    y = self.model.predict(X, batch_size=self.batch_size)

    result = []
    for idx, attr in enumerate(self.output_attributes):
        result.append(self._rescale_output(attr, y[:, idx]))


    # Return inputs and outputs
    if as_df:
        d = pd.DataFrame()
        d['part'] = X[:, -3]
        for i, attr in enumerate(self.position_attributes):
            d[attr] = np.concatenate((samples[:, i], samples[:, i]), axis=0)
        for i, attr in enumerate(self.output_attributes):
            d[attr] = result[i]
        return d

    else:
        return samples, np.array(result)

compare_xyz(doe_id) #

Creates a 3D point cloud compring the ground truth and the prediction on a provided experiment.

Works only when the output variables are [x, y, z] coordinates.

Parameters:

Name Type Description Default
doe_id

id of the experiment.

required
Source code in mesh_predictor/DoubleRegressor2D.py
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
def compare_xyz(self, doe_id):
    """
    Creates a 3D point cloud compring the ground truth and the prediction on a provided experiment. 

    Works only when the output variables are [x, y, z] coordinates.

    :param doe_id: id of the experiment.
    """

    if self.model is None:
        print("Error: no model has been trained yet.")
        return

    if not doe_id in self.doe_ids:
        print("The experiment", doe_id, 'is not in the dataset.')
        return

    indices = self.df_raw[self.df_raw[self.doe_id_joining]==doe_id].index.to_numpy()

    N = len(indices)
    X = self.X[indices, :]
    t = self.target[indices, :]
    for idx, attr in enumerate(self.output_attributes):
        t[:, idx] = self._rescale_output(attr, t[:, idx])


    y = self.model.predict(X, batch_size=self.batch_size)



    for idx, attr in enumerate(self.output_attributes):
        y[:, idx] = self._rescale_output(attr, y[:, idx])


    X_top = X[X[:, -3] == 1, :]; t_top = t[X[:, -3] == 1, :]; y_top = y[X[:, -3] == 1, :]
    X_bot = X[X[:, -3] == 0, :]; t_bot = t[X[:, -3] == 0, :]; y_bot = y[X[:, -3] == 0, :]

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.set_title("Ground truth")
    p = ax.scatter(
        t_top[:, 0],  
        t_top[:, 1],
        t_top[:, 2],
        s=0.001
    )
    p = ax.scatter(
        t_bot[:, 0],  
        t_bot[:, 1],
        t_bot[:, 2],
        s=0.001
    )
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.set_title("Prediction")
    p = ax.scatter(
        y_top[:, 0],  
        y_top[:, 1],
        y_top[:, 2],
        s=0.001
    )
    p = ax.scatter(
        y_bot[:, 0],  
        y_bot[:, 1],
        y_bot[:, 2],
        s=0.001
    )

optimize(objective, positions, nb_trials, fixed={}, as_df=False) #

Returns the process parameters that minimize the provided objective function.

The objective function must take two parameters x and y where x are input positions and y the predictions. It must return one value, the "cost" of that simulation.

def mean_deviation(x, y):
    return y[:, 0].mean()

params = reg.optimize(mean_deviation, positions=100, nb_trials=1000)

Alternative, a dataframe with input and output variables can be passed to the function if as_df is True.

def mean_deviation(df):
    return df['deviation'].to_numpy().mean()

params = reg.optimize(mean_deviation, positions=100, nb_trials=1000)

Parameters:

Name Type Description Default
objective

objective function to be minimized.

required
positions

input positions for the prediction. Must be the same as for predict() depending on the class.

required
nb_trials

number of optimization trials.

required
fixed

dictionary containing fixed values of the process parameters that should not be optimized.

{}
as_df

whether the objective function takes x,y or df as an input.

False
Source code in mesh_predictor/DoubleRegressor2D.py
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
def optimize(self, objective, positions, nb_trials, fixed={}, as_df=False):
    """
    Returns the process parameters that minimize the provided objective function.

    The objective function must take two parameters `x` and `y` where `x` are input positions and `y` the predictions. It must return one value, the "cost" of that simulation.

    ```python
    def mean_deviation(x, y):
        return y[:, 0].mean()

    params = reg.optimize(mean_deviation, positions=100, nb_trials=1000)
    ```

    Alternative, a dataframe with input and output variables can be passed to the function if `as_df` is True.

    ```python
    def mean_deviation(df):
        return df['deviation'].to_numpy().mean()

    params = reg.optimize(mean_deviation, positions=100, nb_trials=1000)
    ```


    :param objective: objective function to be minimized.
    :param positions: input positions for the prediction. Must be the same as for `predict()` depending on the class.
    :param nb_trials: number of optimization trials.
    :param fixed: dictionary containing fixed values of the process parameters that should not be optimized.
    :param as_df: whether the objective function takes x,y or df as an input.
    """
    self._optimize_function = objective
    self._optimize_positions = positions
    self._optimize_fixed = fixed
    self._optimize_as_df = as_df


    optuna.logging.set_verbosity(optuna.logging.WARNING)
    self.study = optuna.create_study(direction='minimize')
    self.study.optimize(self._optimize, n_trials=nb_trials, show_progress_bar=True)

    pp = {}
    for attr in self.process_parameters_joining:
        if attr in fixed.keys():
            pp[attr] = fixed[attr]
    for attr in self.process_parameters_single:
        if attr in fixed.keys():
            pp[attr + '_top'] = fixed[attr]
            pp[attr + '_bot'] = fixed[attr]
        elif attr + '_top' in fixed.keys():
            pp[attr + '_top'] = fixed[attr + '_top']
            pp[attr + '_bot'] = fixed[attr + '_bot']

    pp.update(self.study.best_params)

    print("Best parameters:", pp)
    print("Achieved objective:", self.study.best_value)

    return pp